Intrusion and extrusion of water in hydrophobic nanopores
نویسندگان
چکیده
Heterogeneous systems composed of hydrophobic nanoporous materials and water are capable, depending on their characteristics, of efficiently dissipating (dampers) or storing ("molecular springs") energy. However, it is difficult to predict their properties based on macroscopic theories-classical capillarity for intrusion and classical nucleation theory (CNT) for extrusion-because of the peculiar behavior of water in extreme confinement. Here we use advanced molecular dynamics techniques to shed light on these nonclassical effects, which are often difficult to investigate directly via experiments, owing to the reduced dimensions of the pores. The string method in collective variables is used to simulate, without artifacts, the microscopic mechanism of water intrusion and extrusion in the pores, which are thermally activated, rare events. Simulations reveal three important nonclassical effects: the nucleation free-energy barriers are reduced eightfold compared with CNT, the intrusion pressure is increased due to nanoscale confinement, and the intrusion/extrusion hysteresis is practically suppressed for pores with diameters below 1.2 nm. The frequency and size dependence of hysteresis exposed by the present simulations explains several experimental results on nanoporous materials. Understanding physical phenomena peculiar to nanoconfined water paves the way for a better design of nanoporous materials for energy applications; for instance, by decreasing the size of the nanopores alone, it is possible to change their behavior from dampers to molecular springs.
منابع مشابه
Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.
The forced intrusion of water in hydrophobic nanoporous pulverulent material is of interest for quick storage of energy. With nanometric pores the energy storage capacity is controlled by interfacial phenomena. With subnanometric pores, we demonstrate that a breakdown occurs with the emergence of molecular exclusion as a leading contribution. This bulk exclusion effect leads to an osmotic contr...
متن کاملIntrusion and extrusion of water in hydrophobic mesopores.
We present experimental and theoretical results on intrusion-extrusion cycles of water in hydrophobic mesoporous materials, characterized by independent cylindrical pores. The intrusion, which takes place above the bulk saturation pressure, can be well described using a macroscopic capillary model. Once the material is saturated with water, extrusion takes place upon reduction of the externally...
متن کاملThermally responsive fluid behaviors in hydrophobic nanopores.
A fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. ...
متن کاملPresence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.
Hydrophobic nanopores provide a model system to study hydrophobic interactions at the nanoscale. Such nanopores could also function as a valve since they halt the transport of water and all dissolved species. It has recently been found that a hydrophobic pore can become wetted i.e. filled with condensed water or an aqueous solution of salt when a sufficiently high electric field is applied acro...
متن کاملAssessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments.
The energetic performances of seven SOD or RHO-topology ZIFs, with zinc or cobalt metal cation (ZIF-8, ZIF-90, Zn(dcim)2-SALE, ZIF-67, ZIF-7, ZIF-71, ZIF-11) were evaluated using water intrusion-extrusion under high pressure. The relationship between the structural parameters (in particular the pore system SOD or RHO, the type of linker, the metal cation nature) and the intrusion pressure was s...
متن کامل